

Carbohydrate Research 264 (1994) 313-317

Note

The structure of the O-specific polysaccharide of the lipopolysaccharide from *Chromobacterium* violaceum NCTC 9694

Evgeny V. Vinogradov, Helmut Brade, Otto Holst *

Biochemische Mikrobiologie, Forschungsinstitut Borstel, Institut für Experimentelle Biologie und Medizin, Parkallee 22, D-23845 Borstel, FRG

Received 4 May 1994; accepted 22 May 1994

Keywords: Chromobacterium violaceum; O-Specific polysaccharide; Lipopolysaccharide; D-glycero-D-galacto-Heptose

Chromobacterium violaceum [1,2] is a Gram-negative microorganism inhabiting soil and water. Despite being generally considered non-pathogenic, several cases of infections of humans [3–8] and animals [9,10] have been reported, including urinary tract infections, diarrhoea, and systemic infections with abscesses in multiple organs. Most cases have occurred in tropical and subtropical climates, and were associated with a high mortality rate.

In an early investigation [11], the presence of D-glycero-D-galacto-heptose, together with L-rhamnose and D-glucosamine, in the "specific polysaccharide" of C. violaceum was reported. Later [12], the lipopolysaccharide (LPS) was isolated and its lipid A moiety structurally characterised. Studies concerning the relative amount of 4-amino-4-deoxy-L-arabinose in lipid A have also been undertaken [13]. No.investigations on the structure of the core region and the O-specific antigen have so far been published. We now report the structure of the latter, proving that D-glycero-D-galacto-heptose is a constituent of this LPS region.

Isolated LPS of *C. violaceum* strain NCTC 9694 was hydrolysed and the O-antigenic polysaccharide was separated by gel-permeation chromatography on Sephadex G-50 and lyophilised (8% of the LPS, by mass). Monosaccharide analysis of the polysaccharide

^{*} Corresponding author.

C-1	C-2	C-3	C-4	C-5	C-6	C-7
Unit A (α-r	hamnose)					
100.2	77.4	71.0	73.3	71.0	18.0	
Unit B (B-h	eptose)					
105.0	72.1	74.8	76.3	74.6	70.2	64.5 ^b
Unit C (α-g	(lucosamine)					
99.7	54.3	81.0	69.7	73.1	61.7	
Unit D (α-h	eptose)					
98.9	69.6	70.2	77.9	71.6	70.0	64.3 ^b

Table 1 ¹³C NMR data ^a (in ppm, 90.6 MHz, ²H₂O) of the isolated polysaccharide from LPS of *C. violaceum* NCTC 9694

identified rhamnose, glucosamine, and heptose in molar ratios of ~1:1:2. The heptose alditol possessed a retention time identical to that obtained for L-glycero-D-manno- and D-glycero-D-galacto-heptose which on reduction yield the same alditol. The absolute configurations of the components were shown by gas-liquid chromatography (GLC) of the acetylated (R)-2-butyl (heptose and glucosamine) and (R)-2-octyl (rhamnose) glycosides to be L-rhamnose, D-glucosamine, and D,D-heptose, indicating the presence of D-glycero-D-galacto-heptose in the O-antigenic polysaccharide. Methylation analysis yielded 1,2,5-tri-O-acetyl-6-deoxy-3,4-di-O-methyl-L-(1-2H)mannitol, 1,3,5-tri-O-acetyl-2-deoxy-4,6-di-O-methyl-2-(N-methylacetamido)-D-(1-2H)glucitol, and 1,4,5-tri-O-acetyl-2,3,6,7-tetra-O-methyl-D-glycero-D-galacto-(1-2H)heptitol; thus, rhamnose was substituted at O-2, glucosamine at O-3, and both heptose residues presumably at O-4.

The ¹H and ¹³C NMR spectra of the polysaccharide were assigned using ¹H, ¹H-correlation spectroscopy (COSY), COSY with one-step (RCT) and two-step coherence transfer (RCT2), and ¹H, ¹³C-heteronuclear COSY methods (Table 1 and Table 2). The spectra corresponded to a regular polymer with a tetrasaccharide repeating unit; the total number of signals corresponded to the presence of two hexoses and two heptoses. One of the hexoses is an *N*-acetylated amino sugar (¹³C NMR, C-2 54.3 ppm, *N*-acetyl group signals at 23.4 and 175.5 ppm; ¹H NMR, *N*-acetyl group at 1.98 ppm) while the second hexose is a 6-deoxy sugar (¹³C NMR, C-6 18 ppm; ¹H NMR, H-6 1.25 ppm). The vicinal proton coupling constants of H-2-H-5 of both heptose residues established their *galacto* configuration; the D configuration at C-6 was confirmed by the large coupling constant of 9 Hz between H-5 and H-6 (in L-*glycero*-D-*manno*-heptose, $J_{5,6}$ is ~1 Hz). One heptose residue was linked in α ($J_{1,2}$ 3.5 Hz), the other in β ($J_{1,2}$ 8 Hz), and glucosamine in α configuration ($J_{1,2}$ 3.5 Hz, C-2 at 54.3 ppm). The linkage of the rhamnose residue was α , as indicated by the low-field position of its H-1 signal (5.29 ppm).

To establish the sequence of monosaccharides, one-dimensional nuclear Overhauser effect (NOE) experiments were performed with sequential pre-irradiation of all anomeric protons (Table 3, Fig. 1). The expected intraresidual NOE as well as changes in the intensity of some signals (H-3 in case of α -sugars) due to spin diffusion were observed. The following interresidue NOE signals were observed: between H-1 of the rhamnose residue (unit **A**, see formula below) and H-4 of the β -heptose residue **B** and H-1 of the α -heptose residue **D**,

^a Other signals: N-acetyl, 23.4, 175.5 ppm.

^b Assignment interchangeable.

Table 2 ¹H NMR data ^a (in ppm, 360 MHz, ²H₂O) and coupling constants (in Hz) of the isolated polysaccharide from LPS of C. violaceum NCTC 9694

H-1	H-2	H-3	H-4	H-5	H-6	H-7a	H-7b
$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,6}$			
Unit A (α-rhamnose)						
5.29	4.08	3.87	3.45	3.75	1.25		
br s	2.5	9	9	6.5			
Unit B (B-heptose)						
4.44	3.50	3.74	4.16	3.53	3.77	3.60	3.76
7.5	10	2	<1	9			
Unit C (α-glucosamine	•)					
5.03	4.09	3.86	3.59	4.20	3.74 b, 3.7 c		
3.5	10	10	9				
Unit D (α-heptose)						
5.01	3.84	3.95	4.17	4.03	3.69	3.60	3.76
3.5	10.5	3.5	<1	9			

^a Other signals: N-acetyl, 1.98 ppm.

proving the sequence D-(1-2)-A-(1-4)-B; between B1 and C3, due to the glycosylation at O-3 of the glucosamine C by β -heptose (B); between D1 and A1, A2, and B4, again indicating the presence of the fragment D-(1-2)-A-(1-4)-B, in which the protons D1 and B4 are in close spatial contact over one sugar residue A. Thus, the structure of the repeating unit of C. violaceum NCTC 9694 O-antigenic polysaccharide was established as

2)-
$$\alpha$$
-L-Rha p - $(1 \rightarrow 4)$ - β -Hep p - $(1 \rightarrow 3)$ - α -D-Glc p NAc- $(1 \rightarrow 4)$ - α -Hep p - $(1 \rightarrow \mathbf{A})$

Heptoses are typical constituents of LPS, in most cases occurring in the core region in the L-glycero-D-manno or D-glycero-D-manno configuration [14]. However, L-glycero-D-manno-heptose has also been identified as a constituent of the O-specific polysaccharide of strain L of Pseudomonas cepacia [15], and D-glycero-D-manno-heptose is a constituent of the O-3 [16] and O-21 [17] antigens of Vibrio cholerae. In addition, D-glycero-D-altro-heptose has been found in the O-23 and O-36 antigens of Campylobacter jejuni [18]. So

Table 3
NOE signals observed on pre-irradiation of anomeric protons

Irradiation of H-1 of unit	NOE observed on unit, proton number					
	A	В	С	D		
A (α-rhamnose)	2	3,4,5		1,2		
B (β -heptose)		2,3	3			
C (α-glucosamine)			2,3	4,3		
D (α-heptose)	1,2	4		2,3		

^ь H-ба.

^c H-6b.

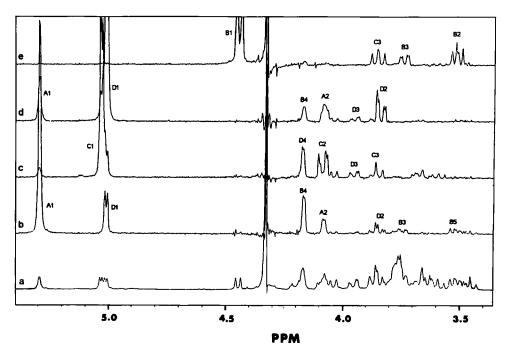


Fig. 1. a, One-dimensional ^{1}H NMR spectrum (360 MHz, $^{2}H_{2}O$) of the O-specific polysaccharide. b-e, One-dimensional NOE spectra with pre-irradiation of H-1 of residue **A** (b), **C** (c), **D** (d), and **B** (e).

far, D-glycero-D-galacto-heptose has been identified only in LPS of the Gram-negative bacterium *C. violaceum*; it is, however, a typical component of the cell-wall antigenic polysaccharides of the Gram-positive microorganism *Eubacterium saburreum* [19–21]. Since D-glycero-D-galacto-heptose gives upon alditol acetate preparation the same product as L-glycero-D-manno-heptose, it cannot be excluded that this sugar is also present in other LPS which were compositionally analysed by GLC of alditol acetates.

1. Experimental

Bacteria and bacterial LPS.—Chromobacterium violaceum was grown in a fermenter (14 L), and the cells were killed with phenol and centrifuged. The bacteria were washed successively with EtOH, acetone (twice), and ether, then dried. The LPS was isolated (3%) from dry bacteria by a modified phenol—CHCl₃—light petroleum method [22].

General methods.—The conditions for NMR spectroscopy, GLC, GLC-mass spectrometry (MS), gel-permeation chromatography, monosaccharide analysis, and determination of the absolute configuration were as described [23]. All NMR spectra were measured in D_2O at 323 K.

Methylation analysis.—Methylation of the polysaccharide (1 mg) was performed according to Ciukanu and Kerek [24]. The methylated product was isolated by CH₂Cl₂—water extraction, then hydrolysed (2 M CF₃CO₂H, 100°C, 1 h), and the sugars were converted into alditol acetates and analysed by GLC-MS.

Acknowledgements

We thank V. Susott for skillful technical assistance and H. Moll for help with GLC-MS.

References

- [1] P.H.A. Sneath, in N.R. Krieg (Ed.), Bergey's Manual of Systematic Bacteriology, Vol. 1, Williams and Wilkins, Baltimore, 1984, pp 580-582.
- [2] P.H.A. Sneath, J.P.F. Whelan, R.B. Singh, and D. Edwards, Lancet, ii, (1953) 276-277.
- [3] P.H.A. Sneath, J. Gen. Microbiol., 15 (1957) 70-98.
- [4] W.M. Johnson, A.F. Disalvo, and R.R. Steuer, Am. J. Clin. Pathol., 56 (1971) 400-406.
- [5] P.R. Georghiu, G.M. O'Kane, S. Siu, and R.J. Kemp, Med. J. Aust., 150 (1989) 720-721.
- [6] R. Ponte and S.G. Jenkins, Pediatr. Infect. Dis. J., 11 (1992) 583-585.
- [7] J. Martin and J. Brimacombe, Anaesth. Intensive Care, 20 (1992) 88-90.
- [8] T.Y. Ti, W.C. Tan, A.P. Chong, and E.H. Lee, Clin. Infect. Dis., 17 (1993) 505-507.
- [9] M.G. Graves, J.M. Strauss, V. Abbas, and C.E. Davis, J. Infect. Dis., 120 (1969) 609-610.
- [10] C.H. Liu, R.M. Chu, C.N. Weng, Y.L. Lin, and C.S. Chi, J. Comp. Pathol., 100 (1989) 459-463.
- [11] A.P. MacLennan and D.A.L. Davis, Biochem. J., 66 (1957) 562-567.
- [12] S. Hase and E.T. Rietschel, Eur. J. Biochem., 75 (1977) 23-34.
- [13] S.K. Bhagya Lakshmi, U.R. Bhat, K. Wartenberg, S. Schlecht, and H. Mayer, FEMS Microbiol. Lett., 51 (1989) 317-322.
- [14] O. Holst and H. Brade, in D.C. Morrison and J.L. Ryan (Eds.), Bacterial Endotoxic Lipopolysaccharides, Vol. 1, CRC Press, Boca Raton, FL, 1992, pp 135-170.
- [15] Y.A. Knirel, N.V. Tanatar, M.A. Soldatkina, A.S. Shashkov, and I.Y. Zakharova, Bioorg. Khim., 14 (1988) 77-81.
- [16] T.A. Chowdhury, P.-E. Jansson, B. Lindberg, J. Lindberg, B. Gustafsson, and T. Holme, Carbohydr. Res., 215 (1991) 304-314.
- [17] A.A. Ansari, L. Kenne, B. Lindberg, B. Gustafsson, and T. Holme, Carbohydr. Res., 150 (1986) 213-219.
- [18] G.O. Aspinall, A.G. McDonald, and H. Pang, Carbohydr. Res., 231 (1992) 13-30.
- [19] J. Hoffman, B. Lindberg, S. Svensson, and T. Hofstad, Carbohydr. Res., 35 (1974) 49-53.
- [20] W. Kondo, F. Nakazawa, M. Sato, and T. Ito, Carbohydr. Res., 117 (1983) 125-131.
- [21] N. Sato, F. Nakazawa, M. Sato, E. Hoshino, and T. Ito, Carbohydr. Res., 245 (1993) 105-111.
- [22] H. Brade and C. Galanos, Eur. J. Biochem., 122 (1982) 233-237.
- [23] E.V. Vinogradov, O. Holst, J.E. Thomas-Oates, K.W. Broady, and H. Brade, Eur. J. Biochem., 210 (1992) 491-498.
- [24] J. Ciucanu and F. Kerek, Carbohydr. Res., 131 (1984) 209-217.